
NCPC 2016

Presentation of solutions

The Jury

2016-10-08

NCPC 2016 solutions

NCPC 2016 Jury

Per Austrin (KTH Royal Institute of Technology)

Pål Grønås Drange (Statoil ASA)

Antti Laaksonen (CSES)

Ulf Lundström (Excillum)

Jimmy Mårdell (Spotify)

Luká² Polá£ek (Google)

Mathias Rav (Aarhus University)

Pehr Söderman (Kattis)

Jon Marius Venstad (Yahoo!)

NCPC 2016 solutions

J � Jumbled Compass

Problem

Simple problem with solutions by the jury in all languages available
in the contest.

Some solution (guess the language)

solve(N1, N2) :-

(N2-N1 > 180 -> Ans is N2-N1-360;

N2-N1 > -180 -> Ans is N2-N1;

Ans is N2-N1+360),

write(Ans), nl.

Statistics: 535 submissions, 266 accepted, �rst after 00:03

Problem Author: Pål Grønås Drange NCPC 2016 solutions

G - Game Rank

Problem

Simulate ranking system of some vaguely familiar game.

Solution

1 Read and understand the rules.

2 Keep track of current rank, current number of stars and
current number of consecutive wins.

3 Update accordingly.

4 Don't try to be clever.

Statistics: 960 submissions, 218 accepted, �rst after 00:17

Problem Author: Jimmy Mårdell NCPC 2016 solutions

G - Game Rank

Problem

Simulate ranking system of some vaguely familiar game.

Solution

1 Read and understand the rules.

2 Keep track of current rank, current number of stars and
current number of consecutive wins.

3 Update accordingly.

4 Don't try to be clever.

Statistics: 960 submissions, 218 accepted, �rst after 00:17

Problem Author: Jimmy Mårdell NCPC 2016 solutions

D - Daydreaming Stockbroker

Problem

Play the stock market when knowing the future.

Solution (guess the language)

fscanf(STDIN, "%d", $days);

$money = 100;

$prev = 1<<30;

for ($i = 0; $i < $days; ++$i) {

fscanf(STDIN, "%d", $cur);

if ($cur > $prev)

$money += min(floor($money/$prev), 100000)*($cur-$prev);

$prev = $cur;

}

echo $money;

Statistics: 740 submissions, 183 accepted, �rst after 00:12

Problem Author: Pehr Söderman NCPC 2016 solutions

D - Daydreaming Stockbroker

Problem

Play the stock market when knowing the future.

Solution (guess the language)

fscanf(STDIN, "%d", $days);

$money = 100;

$prev = 1<<30;

for ($i = 0; $i < $days; ++$i) {

fscanf(STDIN, "%d", $cur);

if ($cur > $prev)

$money += min(floor($money/$prev), 100000)*($cur-$prev);

$prev = $cur;

}

echo $money;

Statistics: 740 submissions, 183 accepted, �rst after 00:12

Problem Author: Pehr Söderman NCPC 2016 solutions

F - Fleecing the Ra�e

Problem

When drawing p items out of n + x items, what is probability that
exactly one out of the �rst x items is drawn?

What is the maximum such probability over all x?

Solution

Statistics: 349 submissions, 68 accepted, �rst after 00:17

Problem Author: Per Austrin NCPC 2016 solutions

F - Fleecing the Ra�e

Problem

When drawing p items out of n + x items, what is probability that
exactly one out of the �rst x items is drawn?

What is the maximum such probability over all x?

Solution

1 Probability is(
x

1

)
·
(

n

p−1

)(
n+x

p

) = {...some calculations...} =
x · p
n + 1

·
x∏

i=2

n − p + i

n + i

2 When going from x − 1 to x , probability changes by factor
x

x − 1
· n − p + x

n + x

3 Some calculus ⇒ increase if x < n
p−1 , decrease otherwise

⇒ max happens at x = bn/(p − 1)c.

Statistics: 349 submissions, 68 accepted, �rst after 00:17

Problem Author: Per Austrin NCPC 2016 solutions

F - Fleecing the Ra�e

Problem

When drawing p items out of n + x items, what is probability that
exactly one out of the �rst x items is drawn?

What is the maximum such probability over all x?

Solution

1 Probability is(
x

1

)
·
(

n

p−1

)(
n+x

p

) = {...some calculations...} =
x · p
n + 1

·
x∏

i=2

n − p + i

n + i

2 When going from x − 1 to x , probability changes by factor
x

x − 1
· n − p + x

n + x

3 Some calculus ⇒ increase if x < n
p−1 , decrease otherwise

⇒ max happens at x = bn/(p − 1)c.

Statistics: 349 submissions, 68 accepted, �rst after 00:17

Problem Author: Per Austrin NCPC 2016 solutions

F - Fleecing the Ra�e

Problem

When drawing p items out of n + x items, what is probability that
exactly one out of the �rst x items is drawn?

What is the maximum such probability over all x?

Solution

1 Probability is(
x

1

)
·
(

n

p−1

)(
n+x

p

) = {...some calculations...} =
x · p
n + 1

·
x∏

i=2

n − p + i

n + i

2 When going from x − 1 to x , probability changes by factor
x

x − 1
· n − p + x

n + x

3 Some calculus ⇒ increase if x < n
p−1 , decrease otherwise

⇒ max happens at x = bn/(p − 1)c.

Statistics: 349 submissions, 68 accepted, �rst after 00:17

Problem Author: Per Austrin NCPC 2016 solutions

F - Fleecing the Ra�e

Problem

When drawing p items out of n + x items, what is probability that
exactly one out of the �rst x items is drawn?

What is the maximum such probability over all x?

Solution

Linear O(n/p) time solution:

int n, p;

scanf("%d%d", &n, &p);

int x = n/(p-1);

double res = double(x*p) / (n+1);

for (int i = 2; i <= x; ++i)

res *= double(n-p+i) / (n+i);

printf("%.9lf\n", res);

Statistics: 349 submissions, 68 accepted, �rst after 00:17

Problem Author: Per Austrin NCPC 2016 solutions

F - Fleecing the Ra�e

Problem

When drawing p items out of n + x items, what is probability that
exactly one out of the �rst x items is drawn?

What is the maximum such probability over all x?

Solution

Constant time solution:

int n, p;

scanf("%d%d", &n, &p);

int x = n++/(p-1);

printf("%.9lf\n", x*p*exp(lgamma(n-p+x)-lgamma(n-p+1)

-lgamma(n+x)+lgamma(n));

(But in order to do this in languages that don't provide full ISO C support,
one may have to implement the Γ function oneself)

Statistics: 349 submissions, 68 accepted, �rst after 00:17

Problem Author: Per Austrin NCPC 2016 solutions

F - Fleecing the Ra�e

Problem

When drawing p items out of n + x items, what is probability that
exactly one out of the �rst x items is drawn?

What is the maximum such probability over all x?

Solution

Constant time solution:

int n, p;

scanf("%d%d", &n, &p);

int x = n++/(p-1);

printf("%.9lf\n", x*p*exp(lgamma(n-p+x)-lgamma(n-p+1)

-lgamma(n+x)+lgamma(n));

(But in order to do this in languages that don't provide full ISO C support,
one may have to implement the Γ function oneself)

Statistics: 349 submissions, 68 accepted, �rst after 00:17
Problem Author: Per Austrin NCPC 2016 solutions

C - Card Hand Sorting

Problem

What is minimum number of cards to move to get list of cards in
some form of order?

Solution

1 Try all 4! = 24 possible ways of ordering the 4 suits.

2 Try all 24 = 16 possible ways of choosing
ascending/descending order within suits.

3 Now we have a �xed total order on the cards.

4 Maximum number of cards that can remain in place is length
of longest increasing subsequence with respect to the chosen
ordering.

Statistics: 77 submissions, 23 accepted, �rst after 00:29

Problem Author: Ulf Lundström NCPC 2016 solutions

C - Card Hand Sorting

Problem

What is minimum number of cards to move to get list of cards in
some form of order?

Solution

1 Try all 4! = 24 possible ways of ordering the 4 suits.

2 Try all 24 = 16 possible ways of choosing
ascending/descending order within suits.

3 Now we have a �xed total order on the cards.

4 Maximum number of cards that can remain in place is length
of longest increasing subsequence with respect to the chosen
ordering.

Statistics: 77 submissions, 23 accepted, �rst after 00:29

Problem Author: Ulf Lundström NCPC 2016 solutions

C - Card Hand Sorting

Problem

What is minimum number of cards to move to get list of cards in
some form of order?

Solution

1 Try all 4! = 24 possible ways of ordering the 4 suits.

2 Try all 24 = 16 possible ways of choosing
ascending/descending order within suits.

3 Now we have a �xed total order on the cards.

4 Maximum number of cards that can remain in place is length
of longest increasing subsequence with respect to the chosen
ordering.

Statistics: 77 submissions, 23 accepted, �rst after 00:29

Problem Author: Ulf Lundström NCPC 2016 solutions

C - Card Hand Sorting

Problem

What is minimum number of cards to move to get list of cards in
some form of order?

Solution

1 Try all 4! = 24 possible ways of ordering the 4 suits.

2 Try all 24 = 16 possible ways of choosing
ascending/descending order within suits.

3 Now we have a �xed total order on the cards.

4 Maximum number of cards that can remain in place is length
of longest increasing subsequence with respect to the chosen
ordering.

Statistics: 77 submissions, 23 accepted, �rst after 00:29

Problem Author: Ulf Lundström NCPC 2016 solutions

C - Card Hand Sorting

Problem

What is minimum number of cards to move to get list of cards in
some form of order?

Solution

1 Try all 4! = 24 possible ways of ordering the 4 suits.

2 Try all 24 = 16 possible ways of choosing
ascending/descending order within suits.

3 Now we have a �xed total order on the cards.

4 Maximum number of cards that can remain in place is length
of longest increasing subsequence with respect to the chosen
ordering.

Statistics: 77 submissions, 23 accepted, �rst after 00:29

Problem Author: Ulf Lundström NCPC 2016 solutions

A - Artwork

Problem

Fill horizontal and vertical blocks of squares in an initially empty
grid, and output the number of un�lled connected components
after each operation.

Solution

1 The problem can be modelled as a graph where each node
represents a square in the grid, and two nodes are connected if
the squares belong to the same component.

2 Each operation can be divided into modi�cations of single
squares in the grid.

3 The process can be simulated e�ciently using a union-�nd
structure when all operations are done in the reverse order.

Statistics: 134 submissions, 17 accepted, �rst after 01:14

Problem Author: Antti Laaksonen NCPC 2016 solutions

A - Artwork

Problem

Fill horizontal and vertical blocks of squares in an initially empty
grid, and output the number of un�lled connected components
after each operation.

Solution

1 The problem can be modelled as a graph where each node
represents a square in the grid, and two nodes are connected if
the squares belong to the same component.

2 Each operation can be divided into modi�cations of single
squares in the grid.

3 The process can be simulated e�ciently using a union-�nd
structure when all operations are done in the reverse order.

Statistics: 134 submissions, 17 accepted, �rst after 01:14

Problem Author: Antti Laaksonen NCPC 2016 solutions

A - Artwork

Problem

Fill horizontal and vertical blocks of squares in an initially empty
grid, and output the number of un�lled connected components
after each operation.

Solution

1 The problem can be modelled as a graph where each node
represents a square in the grid, and two nodes are connected if
the squares belong to the same component.

2 Each operation can be divided into modi�cations of single
squares in the grid.

3 The process can be simulated e�ciently using a union-�nd
structure when all operations are done in the reverse order.

Statistics: 134 submissions, 17 accepted, �rst after 01:14

Problem Author: Antti Laaksonen NCPC 2016 solutions

A - Artwork

Problem

Fill horizontal and vertical blocks of squares in an initially empty
grid, and output the number of un�lled connected components
after each operation.

Solution

1 The problem can be modelled as a graph where each node
represents a square in the grid, and two nodes are connected if
the squares belong to the same component.

2 Each operation can be divided into modi�cations of single
squares in the grid.

3 The process can be simulated e�ciently using a union-�nd
structure when all operations are done in the reverse order.

Statistics: 134 submissions, 17 accepted, �rst after 01:14

Problem Author: Antti Laaksonen NCPC 2016 solutions

A - Artwork

Problem

Fill horizontal and vertical blocks of squares in an initially empty
grid, and output the number of un�lled connected components
after each operation.

Solution

1 The problem can be modelled as a graph where each node
represents a square in the grid, and two nodes are connected if
the squares belong to the same component.

2 Each operation can be divided into modi�cations of single
squares in the grid.

3 The process can be simulated e�ciently using a union-�nd
structure when all operations are done in the reverse order.

Statistics: 134 submissions, 17 accepted, �rst after 01:14

Problem Author: Antti Laaksonen NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

Graph for dictionary ��ame�, ��aming�, �play�, �player�

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

1

1

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

1

1 2

2

2 2

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

1

1 2

2

2 23 3

3 3

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

1

1 2

2

2 23 3

3 3

4

4

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

1

1 2

2

2 23 3

3 3

4

4

5 5

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

1

1 2

2

2 23 3

3 3

4

4

5 5

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

1

1 2

2

2 23 3

3 3

4

4

5 5

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

1

1 2

2

2 23 3

3 3

4

4

5 5

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43

Problem Author: Jimmy Mårdell NCPC 2016 solutions

B - Bless You Autocorrect!

Problem

Type a word using autocorrect.

Solution

1 Realisation: may need multiple autocorrects for a single word

2 Build trie of dictionary, plus shortcut edges for autocorrects

g

e
a mlf

p l a y e r

i n
start

1

1 2

2

2 23 3

3 3

4

4

5 5

3 Find shortest distance to each node with BFS

4 To type word w , �nd node corresponding to longest pre�x of w

5 Answer for w is distance to node + #remaining letters

6 Time complexity: linear in size of input.

Statistics: 70 submissions, 12 accepted, �rst after 00:43
Problem Author: Jimmy Mårdell NCPC 2016 solutions

K - Keeping the Dogs Apart

Problem

Two dogs move around along straight line segments, what is the
closest they get to each other?

Solution 1

1 Split the walks into intervals during which the two dogs don't
switch line segments.

2 Movement is relative: the two dogs walking from P to
P + ∆P and from Q to Q + ∆Q is equivalent to one standing
still at P and other moving from Q to Q + ∆Q −∆P

3 Closest distance in each such interval boils down to distance
between point and line segment, basic geometric primitive.

4 Time complexity: O(n).

Statistics: 95 submissions, 11 accepted, �rst after 01:47

Problem Author: Markus Fanebust Dregi NCPC 2016 solutions

K - Keeping the Dogs Apart

Problem

Two dogs move around along straight line segments, what is the
closest they get to each other?

Solution 1

1 Split the walks into intervals during which the two dogs don't
switch line segments.

2 Movement is relative: the two dogs walking from P to
P + ∆P and from Q to Q + ∆Q is equivalent to one standing
still at P and other moving from Q to Q + ∆Q −∆P

3 Closest distance in each such interval boils down to distance
between point and line segment, basic geometric primitive.

4 Time complexity: O(n).

Statistics: 95 submissions, 11 accepted, �rst after 01:47

Problem Author: Markus Fanebust Dregi NCPC 2016 solutions

K - Keeping the Dogs Apart

Problem

Two dogs move around along straight line segments, what is the
closest they get to each other?

Solution 1

1 Split the walks into intervals during which the two dogs don't
switch line segments.

2 Movement is relative: the two dogs walking from P to
P + ∆P and from Q to Q + ∆Q is equivalent to one standing
still at P and other moving from Q to Q + ∆Q −∆P

3 Closest distance in each such interval boils down to distance
between point and line segment, basic geometric primitive.

4 Time complexity: O(n).

Statistics: 95 submissions, 11 accepted, �rst after 01:47

Problem Author: Markus Fanebust Dregi NCPC 2016 solutions

K - Keeping the Dogs Apart

Problem

Two dogs move around along straight line segments, what is the
closest they get to each other?

Solution 1

1 Split the walks into intervals during which the two dogs don't
switch line segments.

2 Movement is relative: the two dogs walking from P to
P + ∆P and from Q to Q + ∆Q is equivalent to one standing
still at P and other moving from Q to Q + ∆Q −∆P

3 Closest distance in each such interval boils down to distance
between point and line segment, basic geometric primitive.

4 Time complexity: O(n).

Statistics: 95 submissions, 11 accepted, �rst after 01:47

Problem Author: Markus Fanebust Dregi NCPC 2016 solutions

K - Keeping the Dogs Apart

Problem

Two dogs move around along straight line segments, what is the
closest they get to each other?

Solution 1

1 Split the walks into intervals during which the two dogs don't
switch line segments.

2 Movement is relative: the two dogs walking from P to
P + ∆P and from Q to Q + ∆Q is equivalent to one standing
still at P and other moving from Q to Q + ∆Q −∆P

3 Closest distance in each such interval boils down to distance
between point and line segment, basic geometric primitive.

4 Time complexity: O(n).

Statistics: 95 submissions, 11 accepted, �rst after 01:47

Problem Author: Markus Fanebust Dregi NCPC 2016 solutions

K - Keeping the Dogs Apart

Problem

Two dogs move around along straight line segments, what is the
closest they get to each other?

Solution 2 (more or less the same but di�erent perspective)

1 Split the walks into intervals during which the two dogs don't
switch line segments.

2 In an interval where dogs walk from P to P + ∆P and Q to
Q + ∆Q, square dist. after fraction t ∈ [0, 1] of the time is

‖P−Q+t(∆P−∆Q)‖2
2

= ‖P−Q‖2
2
+2t〈P−Q,∆P−∆Q〉+t2‖∆P−∆Q‖2

2

3 Minimum happens at t = −〈P−Q,∆P−∆Q〉
‖∆P−∆Q‖22

(basic calculus)

Truncate to t ∈ [0, 1], be careful with ∆P = ∆Q.

4 Time complexity: O(n).

Statistics: 95 submissions, 11 accepted, �rst after 01:47

Problem Author: Markus Fanebust Dregi NCPC 2016 solutions

K - Keeping the Dogs Apart

Problem

Two dogs move around along straight line segments, what is the
closest they get to each other?

Solution 2 (more or less the same but di�erent perspective)

1 Split the walks into intervals during which the two dogs don't
switch line segments.

2 In an interval where dogs walk from P to P + ∆P and Q to
Q + ∆Q, square dist. after fraction t ∈ [0, 1] of the time is

‖P−Q+t(∆P−∆Q)‖2
2

= ‖P−Q‖2
2
+2t〈P−Q,∆P−∆Q〉+t2‖∆P−∆Q‖2

2

3 Minimum happens at t = −〈P−Q,∆P−∆Q〉
‖∆P−∆Q‖22

(basic calculus)

Truncate to t ∈ [0, 1], be careful with ∆P = ∆Q.

4 Time complexity: O(n).

Statistics: 95 submissions, 11 accepted, �rst after 01:47

Problem Author: Markus Fanebust Dregi NCPC 2016 solutions

K - Keeping the Dogs Apart

Problem

Two dogs move around along straight line segments, what is the
closest they get to each other?

Solution 2 (more or less the same but di�erent perspective)

1 Split the walks into intervals during which the two dogs don't
switch line segments.

2 In an interval where dogs walk from P to P + ∆P and Q to
Q + ∆Q, square dist. after fraction t ∈ [0, 1] of the time is

‖P−Q+t(∆P−∆Q)‖2
2

= ‖P−Q‖2
2
+2t〈P−Q,∆P−∆Q〉+t2‖∆P−∆Q‖2

2

3 Minimum happens at t = −〈P−Q,∆P−∆Q〉
‖∆P−∆Q‖22

(basic calculus)

Truncate to t ∈ [0, 1], be careful with ∆P = ∆Q.

4 Time complexity: O(n).

Statistics: 95 submissions, 11 accepted, �rst after 01:47

Problem Author: Markus Fanebust Dregi NCPC 2016 solutions

K - Keeping the Dogs Apart

Problem

Two dogs move around along straight line segments, what is the
closest they get to each other?

Solution 2 (more or less the same but di�erent perspective)

1 Split the walks into intervals during which the two dogs don't
switch line segments.

2 In an interval where dogs walk from P to P + ∆P and Q to
Q + ∆Q, square dist. after fraction t ∈ [0, 1] of the time is

‖P−Q+t(∆P−∆Q)‖2
2

= ‖P−Q‖2
2
+2t〈P−Q,∆P−∆Q〉+t2‖∆P−∆Q‖2

2

3 Minimum happens at t = −〈P−Q,∆P−∆Q〉
‖∆P−∆Q‖22

(basic calculus)

Truncate to t ∈ [0, 1], be careful with ∆P = ∆Q.

4 Time complexity: O(n).

Statistics: 95 submissions, 11 accepted, �rst after 01:47

Problem Author: Markus Fanebust Dregi NCPC 2016 solutions

E - Exponial

Problem

Compute f (n) mod m, where f (1) = 1, f (n) = nf (n−1).

Solution

1 If n ≤ 5: just compute f (n − 1) and then nf (n−1) mod m with
modular exponentiation.

2 If n > 5: ??????????

Lemma

For all n and m, and e ≥ log2(m) it holds that

ne mod m = nφ(m)+e mod φ(m) mod m.

(φ(m) = Euler's totient function.)

Proof: ugly and does not �t on slide. (Boils down to Chinese
Remainder Theorem and φ being multiplicative.)

Problem Author: Per Austrin NCPC 2016 solutions

E - Exponial

Problem

Compute f (n) mod m, where f (1) = 1, f (n) = nf (n−1).

Solution

1 If n ≤ 5: just compute f (n − 1) and then nf (n−1) mod m with
modular exponentiation.

2 If n > 5: ??????????

Lemma

For all n and m, and e ≥ log2(m) it holds that

ne mod m = nφ(m)+e mod φ(m) mod m.

(φ(m) = Euler's totient function.)

Proof: ugly and does not �t on slide. (Boils down to Chinese
Remainder Theorem and φ being multiplicative.)

Problem Author: Per Austrin NCPC 2016 solutions

E - Exponial

Problem

Compute f (n) mod m, where f (1) = 1, f (n) = nf (n−1).

Solution

1 If n ≤ 5: just compute f (n − 1) and then nf (n−1) mod m with
modular exponentiation.

2 If n > 5: compute z = f (n − 1) mod φ(m) recursively. The
lemma then says that f (n) mod m = nφ(m)+z mod m

Lemma

For all n and m, and e ≥ log2(m) it holds that

ne mod m = nφ(m)+e mod φ(m) mod m.

(φ(m) = Euler's totient function.)

Proof: ugly and does not �t on slide. (Boils down to Chinese
Remainder Theorem and φ being multiplicative.)

Problem Author: Per Austrin NCPC 2016 solutions

E - Exponial

Problem

Compute f (n) mod m, where f (1) = 1, f (n) = nf (n−1).

Solution

1 If n ≤ 5: just compute f (n − 1) and then nf (n−1) mod m with
modular exponentiation.

2 If n > 5: compute z = f (n − 1) mod φ(m) recursively. The
lemma then says that f (n) mod m = nφ(m)+z mod m

3 Time complexity:

each recursive call dominated by time to compute φ(m):
O(
√
m) using naive factorization.

recursing until n becomes ≤ 5 hopelessly slow...

...but we can stop when we reach m = 1!

Lemma: φ(φ(· · ·φ(m))) reaches 1 after O(logm) iterations
Proof: cute but does not �t on slide.

Lemma

For all n and m, and e ≥ log2(m) it holds that

ne mod m = nφ(m)+e mod φ(m) mod m.

(φ(m) = Euler's totient function.)

Proof: ugly and does not �t on slide. (Boils down to Chinese
Remainder Theorem and φ being multiplicative.)

Problem Author: Per Austrin NCPC 2016 solutions

E - Exponial

Problem

Compute f (n) mod m, where f (1) = 1, f (n) = nf (n−1).

Solution

1 If n ≤ 5: just compute f (n − 1) and then nf (n−1) mod m with
modular exponentiation.

2 If n > 5: compute z = f (n − 1) mod φ(m) recursively. The
lemma then says that f (n) mod m = nφ(m)+z mod m

3 Time complexity:

each recursive call dominated by time to compute φ(m):
O(
√
m) using naive factorization.

recursing until n becomes ≤ 5 hopelessly slow...
...but we can stop when we reach m = 1!

Lemma: φ(φ(· · ·φ(m))) reaches 1 after O(logm) iterations
Proof: cute but does not �t on slide.

Lemma

For all n and m, and e ≥ log2(m) it holds that

ne mod m = nφ(m)+e mod φ(m) mod m.

(φ(m) = Euler's totient function.)

Proof: ugly and does not �t on slide. (Boils down to Chinese
Remainder Theorem and φ being multiplicative.)

Problem Author: Per Austrin NCPC 2016 solutions

E - Exponial

Problem

Compute f (n) mod m, where f (1) = 1, f (n) = nf (n−1).

Solution

1 If n ≤ 5: just compute f (n − 1) and then nf (n−1) mod m with
modular exponentiation.

2 If n > 5: compute z = f (n − 1) mod φ(m) recursively. The
lemma then says that f (n) mod m = nφ(m)+z mod m

3 Time complexity:

each recursive call dominated by time to compute φ(m):
O(
√
m) using naive factorization.

recursing until n becomes ≤ 5 hopelessly slow...
...but we can stop when we reach m = 1!

Lemma: φ(φ(· · ·φ(m))) reaches 1 after O(logm) iterations
Proof: cute but does not �t on slide.

Lemma

For all n and m, and e ≥ log2(m) it holds that

ne mod m = nφ(m)+e mod φ(m) mod m.

(φ(m) = Euler's totient function.)

Proof: ugly and does not �t on slide. (Boils down to Chinese
Remainder Theorem and φ being multiplicative.)

Problem Author: Per Austrin NCPC 2016 solutions

E - Exponial

Problem

Compute f (n) mod m, where f (1) = 1, f (n) = nf (n−1).

Solution

1 If n ≤ 5: just compute f (n − 1) and then nf (n−1) mod m with
modular exponentiation.

2 If n > 5: compute z = f (n − 1) mod φ(m) recursively. The
lemma then says that f (n) mod m = nφ(m)+z mod m

3 Time complexity:

each recursive call dominated by time to compute φ(m):
O(
√
m) using naive factorization.

recursing until n becomes ≤ 5 hopelessly slow...
...but we can stop when we reach m = 1!

Lemma: φ(φ(· · ·φ(m))) reaches 1 after O(logm) iterations
Proof: cute but does not �t on slide.

Statistics: 47 submissions, 3 accepted, �rst after 00:45

Lemma

For all n and m, and e ≥ log2(m) it holds that

ne mod m = nφ(m)+e mod φ(m) mod m.

(φ(m) = Euler's totient function.)

Proof: ugly and does not �t on slide. (Boils down to Chinese
Remainder Theorem and φ being multiplicative.)

Problem Author: Per Austrin NCPC 2016 solutions

H - Highest Tower

Problem

Given a set of rectangles, build a tower of maximum height.

Solution

1 Make a graph: vertices = lengths, edges = given rectangles.

1 2

4 3

1

4

2 Encode orientation of a rectangle as direction of an edge.
1

3

1

3

3 Orientation of rectangles gives a valid tower if no width occurs
more than once ⇔ all nodes have outdegree ≤ 1

Problem Author: Andreas Björklund NCPC 2016 solutions

H - Highest Tower

Problem

Given a set of rectangles, build a tower of maximum height.

Solution

1 Make a graph: vertices = lengths, edges = given rectangles.

1 2

4 3

1

4

2 Encode orientation of a rectangle as direction of an edge.
1

3

1

3

3 Orientation of rectangles gives a valid tower if no width occurs
more than once ⇔ all nodes have outdegree ≤ 1

Problem Author: Andreas Björklund NCPC 2016 solutions

H - Highest Tower

Problem

Given a set of rectangles, build a tower of maximum height.

Solution

1 Make a graph: vertices = lengths, edges = given rectangles.

1 2

4 3

1

4

2 Encode orientation of a rectangle as direction of an edge.
1

3

1

3

3 Orientation of rectangles gives a valid tower if no width occurs
more than once ⇔ all nodes have outdegree ≤ 1

Problem Author: Andreas Björklund NCPC 2016 solutions

H - Highest Tower

Problem Reformulated

Given an undirected graph, direct edges so that each node has at
most one out-going edge and maximize

∑
v∈V value(v) · indeg(v)

Solution

1 In connected component with v vertices and e edges, average
out-degree is e/v , so we must have e ≤ v

Each component is a tree, or a tree plus one edge.

2 Case 1: e = v (tree plus one edge): each node must get
out-degree exactly 1 so indeg(v) = deg(v)− 1.

3 Case 2: e = v − 1 (tree): one node will have out-degree 0,
the rest out-degree 1. Let node with highest value get
out-degree 0 in order to maximize height.

4 Time complexity: O(n) (assuming O(1) dictionary lookup).

Statistics: 38 submissions, 3 accepted, �rst after 02:22

Problem Author: Andreas Björklund NCPC 2016 solutions

H - Highest Tower

Problem Reformulated

Given an undirected graph, direct edges so that each node has at
most one out-going edge and maximize

∑
v∈V value(v) · indeg(v)

Solution

1 In connected component with v vertices and e edges, average
out-degree is e/v , so we must have e ≤ v

Each component is a tree, or a tree plus one edge.

2 Case 1: e = v (tree plus one edge): each node must get
out-degree exactly 1 so indeg(v) = deg(v)− 1.

3 Case 2: e = v − 1 (tree): one node will have out-degree 0,
the rest out-degree 1. Let node with highest value get
out-degree 0 in order to maximize height.

4 Time complexity: O(n) (assuming O(1) dictionary lookup).

Statistics: 38 submissions, 3 accepted, �rst after 02:22

Problem Author: Andreas Björklund NCPC 2016 solutions

H - Highest Tower

Problem Reformulated

Given an undirected graph, direct edges so that each node has at
most one out-going edge and maximize

∑
v∈V value(v) · indeg(v)

Solution

1 In connected component with v vertices and e edges, average
out-degree is e/v , so we must have e ≤ v

Each component is a tree, or a tree plus one edge.

2 Case 1: e = v (tree plus one edge): each node must get
out-degree exactly 1 so indeg(v) = deg(v)− 1.

3 Case 2: e = v − 1 (tree): one node will have out-degree 0,
the rest out-degree 1. Let node with highest value get
out-degree 0 in order to maximize height.

4 Time complexity: O(n) (assuming O(1) dictionary lookup).

Statistics: 38 submissions, 3 accepted, �rst after 02:22

Problem Author: Andreas Björklund NCPC 2016 solutions

H - Highest Tower

Problem Reformulated

Given an undirected graph, direct edges so that each node has at
most one out-going edge and maximize

∑
v∈V value(v) · indeg(v)

Solution

1 In connected component with v vertices and e edges, average
out-degree is e/v , so we must have e ≤ v

Each component is a tree, or a tree plus one edge.

2 Case 1: e = v (tree plus one edge): each node must get
out-degree exactly 1 so indeg(v) = deg(v)− 1.

3 Case 2: e = v − 1 (tree): one node will have out-degree 0,
the rest out-degree 1. Let node with highest value get
out-degree 0 in order to maximize height.

4 Time complexity: O(n) (assuming O(1) dictionary lookup).

Statistics: 38 submissions, 3 accepted, �rst after 02:22

Problem Author: Andreas Björklund NCPC 2016 solutions

H - Highest Tower

Problem Reformulated

Given an undirected graph, direct edges so that each node has at
most one out-going edge and maximize

∑
v∈V value(v) · indeg(v)

Solution

1 In connected component with v vertices and e edges, average
out-degree is e/v , so we must have e ≤ v

Each component is a tree, or a tree plus one edge.

2 Case 1: e = v (tree plus one edge): each node must get
out-degree exactly 1 so indeg(v) = deg(v)− 1.

3 Case 2: e = v − 1 (tree): one node will have out-degree 0,
the rest out-degree 1. Let node with highest value get
out-degree 0 in order to maximize height.

4 Time complexity: O(n) (assuming O(1) dictionary lookup).

Statistics: 38 submissions, 3 accepted, �rst after 02:22

Problem Author: Andreas Björklund NCPC 2016 solutions

H - Highest Tower

Problem Reformulated

Given an undirected graph, direct edges so that each node has at
most one out-going edge and maximize

∑
v∈V value(v) · indeg(v)

Solution

1 In connected component with v vertices and e edges, average
out-degree is e/v , so we must have e ≤ v

Each component is a tree, or a tree plus one edge.

2 Case 1: e = v (tree plus one edge): each node must get
out-degree exactly 1 so indeg(v) = deg(v)− 1.

3 Case 2: e = v − 1 (tree): one node will have out-degree 0,
the rest out-degree 1. Let node with highest value get
out-degree 0 in order to maximize height.

4 Time complexity: O(n) (assuming O(1) dictionary lookup).

Statistics: 38 submissions, 3 accepted, �rst after 02:22
Problem Author: Andreas Björklund NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

1 Try all 4 possible ways of using the two crossings.

2 Case 1, use both crossings: problem decomposes into two
separate problems on a line, simple greedy.

3 Case 2, use one crossing: a bit of work, better to skip and
then revisit with ideas from the harder Case 3.

4 Case 3, don't use crossings: main challenge to handle.

In order to improve on Case 1, can use at most 1 extra device
for the sides.
One side must use minimum number of crossings.

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

1 Try all 4 possible ways of using the two crossings.

2 Case 1, use both crossings: problem decomposes into two
separate problems on a line, simple greedy.

3 Case 2, use one crossing: a bit of work, better to skip and
then revisit with ideas from the harder Case 3.

4 Case 3, don't use crossings: main challenge to handle.

In order to improve on Case 1, can use at most 1 extra device
for the sides.
One side must use minimum number of crossings.

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

1 Try all 4 possible ways of using the two crossings.

2 Case 1, use both crossings: problem decomposes into two
separate problems on a line, simple greedy.

3 Case 2, use one crossing: a bit of work, better to skip and
then revisit with ideas from the harder Case 3.

4 Case 3, don't use crossings: main challenge to handle.

In order to improve on Case 1, can use at most 1 extra device
for the sides.
One side must use minimum number of crossings.

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

1 Try all 4 possible ways of using the two crossings.

2 Case 1, use both crossings: problem decomposes into two
separate problems on a line, simple greedy.

3 Case 2, use one crossing: a bit of work, better to skip and
then revisit with ideas from the harder Case 3.

4 Case 3, don't use crossings: main challenge to handle.

In order to improve on Case 1, can use at most 1 extra device
for the sides.
One side must use minimum number of crossings.

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

1 Try all 4 possible ways of using the two crossings.

2 Case 1, use both crossings: problem decomposes into two
separate problems on a line, simple greedy.

3 Case 2, use one crossing: a bit of work, better to skip and
then revisit with ideas from the harder Case 3.

4 Case 3, don't use crossings: main challenge to handle.

In order to improve on Case 1, can use at most 1 extra device
for the sides.
One side must use minimum number of crossings.

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

P

Guess �rst position P to use after �rst crossing, O(n) choices.

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

P

Try to squeeze the rest as close as possible to the crossing, O(1)
choices given P .

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

P

When one side is decided, the positions next to the crossings deter-
mine which crossing calls remain uncovered.

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

P

When one side is decided, the positions next to the crossings deter-
mine which crossing calls remain uncovered.

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

P

Now want optimal solution to the other side with up to 4 extra
intervals added � there are O(1) choices to try for the key positions.

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

P

...one horrible implementation and 20 bugs later: success!

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

Problem

Given large set of paths in large graph with very special structure,
�nd minimum set of edges that hit all paths.

Solution 1

P

...one horrible implementation and 20 bugs later: success!

Time complexity: O((n + m) log n) (though can be made linear at
cost of making implementation even more horrible)

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

If you prefer to remain sane and don't want to take the mildly
masochistic path of solution 1...

Solution 2

1 Cover all paths contained in one of the four �tails� optimally,
get �rst device as close to beginning as possible. Greedy.

2 Add one extra device to some tails to cut o� all paths from the
tail to the rest of the graph. Only 16 possibilities; try them all.

3 Graph and remaining paths now truncated to a circle. Can be

solved with dynamic programming.

4 Time complexity: O(n + m) (assuming bucket sort or similar)

Statistics: 7 submissions, 0 accepted, �rst after N/A

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

If you prefer to remain sane and don't want to take the mildly
masochistic path of solution 1...

Solution 2

1 Cover all paths contained in one of the four �tails� optimally,
get �rst device as close to beginning as possible. Greedy.

2 Add one extra device to some tails to cut o� all paths from the
tail to the rest of the graph. Only 16 possibilities; try them all.

3 Graph and remaining paths now truncated to a circle. Can be

solved with dynamic programming.

4 Time complexity: O(n + m) (assuming bucket sort or similar)

Statistics: 7 submissions, 0 accepted, �rst after N/A

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

If you prefer to remain sane and don't want to take the mildly
masochistic path of solution 1...

Solution 2

1 Cover all paths contained in one of the four �tails� optimally,
get �rst device as close to beginning as possible. Greedy.

2 Add one extra device to some tails to cut o� all paths from the
tail to the rest of the graph. Only 16 possibilities; try them all.

3 Graph and remaining paths now truncated to a circle. Can be

solved with dynamic programming.

4 Time complexity: O(n + m) (assuming bucket sort or similar)

Statistics: 7 submissions, 0 accepted, �rst after N/A

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

If you prefer to remain sane and don't want to take the mildly
masochistic path of solution 1...

Solution 2

1 Cover all paths contained in one of the four �tails� optimally,
get �rst device as close to beginning as possible. Greedy.

2 Add one extra device to some tails to cut o� all paths from the
tail to the rest of the graph. Only 16 possibilities; try them all.

3 Graph and remaining paths now truncated to a circle. Can be

solved with dynamic programming.

4 Time complexity: O(n + m) (assuming bucket sort or similar)

Statistics: 7 submissions, 0 accepted, �rst after N/A

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

If you prefer to remain sane and don't want to take the mildly
masochistic path of solution 1...

Solution 2

1 Cover all paths contained in one of the four �tails� optimally,
get �rst device as close to beginning as possible. Greedy.

2 Add one extra device to some tails to cut o� all paths from the
tail to the rest of the graph. Only 16 possibilities; try them all.

3 Graph and remaining paths now truncated to a circle. Can be

solved with dynamic programming.

4 Time complexity: O(n + m) (assuming bucket sort or similar)

Statistics: 7 submissions, 0 accepted, �rst after N/A

Problem Author: Per Austrin NCPC 2016 solutions

I - Interception

If you prefer to remain sane and don't want to take the mildly
masochistic path of solution 1...

Solution 2

1 Cover all paths contained in one of the four �tails� optimally,
get �rst device as close to beginning as possible. Greedy.

2 Add one extra device to some tails to cut o� all paths from the
tail to the rest of the graph. Only 16 possibilities; try them all.

3 Graph and remaining paths now truncated to a circle. Can be

solved with dynamic programming.

4 Time complexity: O(n + m) (assuming bucket sort or similar)

Statistics: 7 submissions, 0 accepted, �rst after N/A

Problem Author: Per Austrin NCPC 2016 solutions

Random numbers

296 teams with 722 contestants.

3045 submissions, 802 accepted (26%)1

34 number of seconds before end that last accepted
submission was submitted.

482 number of lines of code used in total by the shortest
jury solutions to solve the entire problem set.
(154 of those lines for I Interception)

1These numbers only count submissions up to the �rst accepted solution on

each problem for each team.
NCPC 2016 solutions

Random facts

All but one of the problems have near-linear solutions

Exception:

E (Exponial). Basic solution O(
√
m logm), input

size O(logm). Very unlikely to have near-linear time solution.

(Asymptotically, F (Ra�e) is probably also an exception.)

Required precision for K (Dogs) changed from 10−6 to 10−4

just a few days before the contest. Many solutions have poor
precision when answer is ≈ 0. Problem meant to be easy, not a
�oating point trap. Unfortunately this change was insu�cient,
some teams were still tripped up by precision issues.

I (Interception) had the largest number of test cases (125),
largest amount of test data (≈ 325 MB), and largest number
of intentionally incorrect judge solutions (41).

The jury wrote Python solutions for almost all problems.
Exceptions: C (Card Hand Sorting) for no good reason, and
I (Interception) because painful.

NCPC 2016 solutions

Random facts

All but one of the problems have near-linear solutions

Exception: E (Exponial). Basic solution O(
√
m logm), input

size O(logm). Very unlikely to have near-linear time solution.

(Asymptotically, F (Ra�e) is probably also an exception.)

Required precision for K (Dogs) changed from 10−6 to 10−4

just a few days before the contest. Many solutions have poor
precision when answer is ≈ 0. Problem meant to be easy, not a
�oating point trap. Unfortunately this change was insu�cient,
some teams were still tripped up by precision issues.

I (Interception) had the largest number of test cases (125),
largest amount of test data (≈ 325 MB), and largest number
of intentionally incorrect judge solutions (41).

The jury wrote Python solutions for almost all problems.
Exceptions: C (Card Hand Sorting) for no good reason, and
I (Interception) because painful.

NCPC 2016 solutions

Random facts

All but one of the problems have near-linear solutions

Exception: E (Exponial). Basic solution O(
√
m logm), input

size O(logm). Very unlikely to have near-linear time solution.

(Asymptotically, F (Ra�e) is probably also an exception.)

Required precision for K (Dogs) changed from 10−6 to 10−4

just a few days before the contest. Many solutions have poor
precision when answer is ≈ 0. Problem meant to be easy, not a
�oating point trap. Unfortunately this change was insu�cient,
some teams were still tripped up by precision issues.

I (Interception) had the largest number of test cases (125),
largest amount of test data (≈ 325 MB), and largest number
of intentionally incorrect judge solutions (41).

The jury wrote Python solutions for almost all problems.
Exceptions: C (Card Hand Sorting) for no good reason, and
I (Interception) because painful.

NCPC 2016 solutions

Random facts

All but one of the problems have near-linear solutions

Exception: E (Exponial). Basic solution O(
√
m logm), input

size O(logm). Very unlikely to have near-linear time solution.

(Asymptotically, F (Ra�e) is probably also an exception.)

Required precision for K (Dogs) changed from 10−6 to 10−4

just a few days before the contest. Many solutions have poor
precision when answer is ≈ 0. Problem meant to be easy, not a
�oating point trap. Unfortunately this change was insu�cient,
some teams were still tripped up by precision issues.

I (Interception) had the largest number of test cases (125),
largest amount of test data (≈ 325 MB), and largest number
of intentionally incorrect judge solutions (41).

The jury wrote Python solutions for almost all problems.
Exceptions: C (Card Hand Sorting) for no good reason, and
I (Interception) because painful.

NCPC 2016 solutions

Random facts

All but one of the problems have near-linear solutions

Exception: E (Exponial). Basic solution O(
√
m logm), input

size O(logm). Very unlikely to have near-linear time solution.

(Asymptotically, F (Ra�e) is probably also an exception.)

Required precision for K (Dogs) changed from 10−6 to 10−4

just a few days before the contest. Many solutions have poor
precision when answer is ≈ 0. Problem meant to be easy, not a
�oating point trap. Unfortunately this change was insu�cient,
some teams were still tripped up by precision issues.

I (Interception) had the largest number of test cases (125),
largest amount of test data (≈ 325 MB), and largest number
of intentionally incorrect judge solutions (41).

The jury wrote Python solutions for almost all problems.
Exceptions: C (Card Hand Sorting) for no good reason, and
I (Interception) because painful.

NCPC 2016 solutions

What now?

Northwestern Europe Contest: November 18 in Bath (UK).
Teams from Nordic, Benelux, Germany, UK, Ireland.

Each university sends up to three(?) teams to �ght for spot in
World Finals (May, in Rapid City, South Dakota, USA)

NCPC 2016 solutions

